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A unified description for the parallel relaxation in systems with static disorder and for the competitive risk
mortality theory in population biology is suggested by combining the physical and biological approaches
presented in the literature. A multichannel parallel decay process is investigated by assuming that each channel
is characterized by a state vectoand by a probability of decaying(x;t). A general fluctuation-dissipation
relation is derived which relates the effective decay rate of the process to the fluctuations of the density of
channels characterized by different state vectors. A limit of the thermodynamic typspace is introduced
for which both the volume available and the average number of channels tend to infinity, but the average
volume density of channels remains constant. By using scaling arguments combined with a stochastic renor-
malization group approach, two types of universal laws are identified in the thermodynamic limit for the
relaxation(survival) function corresponding to nonintermittent and intermittent fluctuations of the density of
channels, respectively. For nonintermittent fluctuations the general relaxation equation of Huber is recovered,
which includes the stretched exponential equation as a particular case, whereas for intermittent fluctuations a
more complicated universal relaxation equation is obtained which includes Huber's equation, the stretched
exponential, and the inverse power law relaxation equations as particular [(@HEe63-651X96)07805-1

PACS numbegps): 05.40:+j, 64.60.Ak, 87.10+e

Although models of relaxation processes in disorderedtharacterized by the state vector The relaxation or the
systems[1-3] share some common features with the sto-death occur if at least one of the individual channels lead to
chastic theory of mortality4—6], there has been almost no these processes. Denoting Bithe total instantaneous prob-
interaction between these two branches of physics and biokbility of relaxation at timet, we have
ogy. The purpose of this paper is to suggest a unified ap-
proach for the theory of parallel relaxation in systems with g[g(x);t]gl_n [1—p(x,;t)]E0wAxy
static disorder and the model of competitive risks in mortal- u
ity theory by combining the different methods developed for
the §tudy of these two problems in the physical and biologi- - 1—exp[ f {)dx IN[1—p(x:H)]f, (D)
cal literature.
tak\évf)lzéléd)l;yaféngwﬁgagﬂ?é nr;lta );()z{tlr?\?v ag(;%?;;:v?hc : n_canwhere {(x)dx is the number of channels with a state vector

nely characterized by different values of dh-dimensional betl\ANSetehn; :nsdtt)e(r:c:;(.disordered the state densitv of channels
state vectok=(Xy,...,Xy). For a physical relaxation process Y ’ y

the state vectox may be the dispiacement vector betweeng(x) is a random function whose stochastic properties can be

two interacting molecules or an individual relaxation &g characterized by the characteristic functional

whereas in the case of the mortality process the vector of

the relevant variables characterizing the state of an individual G[K(x)]= < exp{ [ f K(x)¢( )dX)> 2

[7]. We denote byp(x;t) the instantaneous probability of

relaxation(death) at timet attached to an individual channel where K(x) is a test function conjugate to the density of
states{(x). Herewith we restrict ourselves to systems with
static disorder, for which the characteristic functional

*Permanent address: Romanian Academy of Sciences, Centre f&{K(x)] is time independent. This assumption of time inde-

Mathematical Statistics, Casa Academiei Romane, Calea 13 Sermpendence is also consistent with the theory of competitive

pembrie No. 13, OP. Bucuresti 5, 76100 Bucharest, Romaniatisks in population dynamics, where the contributions of the

present address: Department of Chemistry, Stanford Universitydifferent factors to the mortality process are assumed to be

Stanford, CA 94305-5080. time independeni4-6].
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The observable function both in solid-state physics and ircan be expressed in terms of the characteristic functional
population biology is the overall probability of relaxation G[K(x)]. By combining Eqs(2)—(4), we obtain
(death,

[(t)=G[K(x)=ib(x;t)], 6
(£ OY=(A1500:tD), 3 (U=G[K(x=ib(xD)] ®)

or the complementary probability where
H=1-{2W), @ b(x;t)=—In[1—p(x:1)] @

which bear the names of relaxation function and survival
function in physics and in biology, respectively. An alterna-
tive characterization of the process can be given in terms

is the bit numbef8] of the individual probability of survival
} p(x;t) attached to the channel characterized by the state

: . ; Yectorx.
the effective relaxation ratéhe mortality force If the cumulants of the density of states(x),
w(t)=—2a, In1(t). (5)  ((I(X0)...1 (X)), m=1,2,..., which describe the fluctuations

of the number of channels with different state vectors, exist
In Eq. (3) the average is taken over all possible values ofand are finite, we can express the characteristic functional
the density of stateg(x). It is easy to check that this average G[K(x)] as[9]

G[K<x>]=exp[ > =] ~-~f<</:<x1>~~§<xm>>>K(x1>~~~K<xm>dx1~~dxm], ®

m=

from which we obtain the following expressions for the relaxation funck{@h and for the effective relaxation raje(t):

o

—1)m
W=exp 3 f~~-f<<z<x1>-~§<xm>>>b<x1;t)--~b<xm;t>dx1-~dxm], ©

o

pi=3 SO [ e o)

me1 m! H b(Xu t) Xm"'de. (10)

o, |n[ IT b(x,:t)
=1

Equations(9) and(10) are general fluctuation-dissipation re- thermodynamic type for which both the average number of
lations which relate the average time-dependent behavior athannels./") and the volumé/s of the available state space
the system expressed by the functidfs) or w(t) to the tend to infinity but the average volume density of channels
fluctuations of the numbers of channels characterized by dif-

ferent state vectors expressed by the cumulants e=(J)Vs (13
{L(X9)...LXm))). Although valid both in the physical and bio- ]

logical contexts considered in this paper, E(®.and (10) ~ rémains constant:

are not very useful because they depend on a number of ) ) ,

unknown functions. That is why in the following we inves- Vi (J) = with e=(J7)/Vy=const. (14
tigate the possibility of an occurrence of certain types of
universal limit behaviors in the limit corresponding to a very
large number of channels.

We start out by considering that the possible values of th
state vectoix belong to a certain domail of the x space.
The corresponding volum‘e‘z and the total average number
of channelg./") are given by

Such a limit has been recently introduced in a biological
context for the study of space-dependent epidefiiios For
investigating the asymptotic behavior which emerges in the
imit (14), we should have some knowledge concerning the
nature of the fluctuations of the number of channels. We
introduce the relative fluctuations of different orders
m=2.3,...,

= | dr, el (X

=23,....
(15
o= [ geonax= [ comax, a2

If the functionsc,(Xy,...Xy,) decrease to zero in the thermo-
dynamic limit (14),

where we have used the property that the first cumulant

{(&(x))) of the density of stateg(x) is equal to the corre- Cm(X1,... Xm)—0 as Vs ,(/)—w with e=const,

sponding average valug(x)). We consider a limit of the (16
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then the fluctuations of the number of channels are noninteiis the average probability that the state vector of an indi-
mittent; otherwise, if in the thermodynamic limit the func- vidual channel is betweex andx+dx and

tions ¢,(X4,...Xy) do not decrease to zero but tend toward )

constant values different from zero or diverge to infinity, ci(x)=1 independent ofx. (23)

:Zﬁ? the fluctuations of the number of channels are mtermltBy assuming that the fluctuations of the number of channels

For investigating the asymptotic behavior in the thermo_are nonintermittent, and that the conditions of nonintermit-

dynamic limit (14), we need to know the dependence of thefgggg g[(l)ﬁzhgolﬁi\'/nertshj g1eehr6rl:1/<i)odrynam|c limit14), Eq. (21)
individual probability of relaxatiop(x;t) attached to a given

channel of the state vectarand of the time. We denote by

W(x) the individual relaxationdeath rate of an individual I(t)=exp{ —f p(W)[1—exp(—WHt)]dW;, (29
channel characterized by the state vect@nd by\(x) the

probability that the channel is open. If an individual channelyhere

were always opefiz(x)=1] or closed[\(x)=0], we would

have p(W)=e f AW-W)IV* (0éx)dx (25

1-p(x;t)y=exd —tW(x)] for N(x)=1, a7

is the average density of active channels distributed accord-

1-p(xt)=1 for A(x)=0. (18)  ing to their relaxation rates. Relationshi) was derived in
the physical literature by Hub¢i 1] on the basis of a model
for the decay of luminiscence. An alternative derivation of
eEq. (24) based on the use of the theory of random point
processes has recently been suggested by two of the present
1—p(x;t) =N (X)exp — tW(x) ]+ 1—\(X). (19) authors[12]. Our derivation of Huber's law24) is less re-
strictive than the other proofs presented in the literature, be-

Concerning the probabilitx(x) that the channel character- cause it is not based on a particular model but is rather a
ized by the state vector is open, we assume that it is the universal law which emerges in the thermodynamic limit
ratio between a characteristic volurk& (x) of a neighbor- (14) in the case of nonintermittent fluctuations of the number

hood of the stata&, and the total volum&'y available in the of channels.
X space, The study of the universal law which emerges in the case

of intermittent fluctuations is more complicated. In this case

A(X)=V*(X)/Vs . (200 a renormalization group technique should be used. In the
i ) i following we apply a probabilistic versiofl3] of the
Equation(20) expresses the locality of the behavior of Cha”'ShIesinger-Hughes stochastic renormalization proceiduie

nels; a similar relat_ionship has be(_—:-n suggested in the conteyjich was recently applied to a study of space-dependent
of the theory of epidemickl0]. An important feature of the g ijemics with high migratiofil0]. The method consists in

instantaneous decay lal&9) is the assumption of €Xponen- giarting from an initial characteristic function®[K (x)] of

tial relaxation for the case when the channel is open; in it§,e gensity of stateg(x) for which the fluctuations are non-
present form this assumption was introduced by Huber tfhiermittent and in constructing, by means of a succession of
years agd11]; he showed that it may be viewed as being agecimation processes, a renormalized characteristic func-
rgsult of a local Markovian behavior of the different indi- tional G[K (x)] for which the fluctuations of the density of
vidual channels. _ , states are intermittent. The main steps of such an approach

By combining Eqs.(9)—(19) we arrive at the following 46 presented in another context in Ha8], and a simplified
expression for the relaxatiofsurviva) function|(t): derivation is also presented in R¢L0]. The corresponding
expression for the renormalized characteristic functional

I(t):eXp{ > ;_T L"'Lcm(xl,---,xm)ﬂxl)'"§(Xm) G[K(x)] is given by(see Appendix A

For a probabilityh(x) between zero and unity, the probabil-
ity 1—p(x;t) is an average of the values corresponding to th
two limit cases given by Eq$17) and (18):

V* () BIK(0]=H fole-le[—i In[1—z

1- Vs

m
<11
u=1

Vz'l’]

x{1-exp(iK(x))]}ldz, H>0, (26)

X {1— exp] —tW(x,)]}

]dxl---dxm], (21) whereH>0 is a positive fractal exponent which describes
the intermittent nature of the fluctuations of the number of
channels. By expressing the renormalized cumulants
{(&(xq) -+ (%)) and the corresponding nonrenormalized cu-
mulants (({(x,)---{(x))) _as functional derivatives of the
E()dx={{{(x)))ydx /L((g(x))}dx characteristic functionalg[K (x)] andG[K (x)], respectively,

((Zxq) L))
=(—1)™8™ In G[K(x)=01/[ 8K (xq)"+* SK(Xm)], (27)

where

with Lg(x)dx= 1, (22
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((L(x) - L(Xm)))
= (=)™ In G[K(x)=0]/[SK(X,)--- K(Xy)], (298

o~ _H ()
6—<./]* >/V2—m V_z (29)

it is easy to check that, if the nonrenormalized fluctuationsHere we have used the relationship between the renormalized
are nonintermittent and obey the nonintermittency conditionand nonrenormalized average number of channels,
(16), then the renormalized fluctuations are intermittent.

For computing the universal law which emerges in the
thermodynamic limi{(14) for intermittent fluctuations, in Eq.
(26) we expand the nonrenormalized characteristic func-
tional G[K(x)] in the cumulant expansiai8) and express the which can easily be derived by the functional differentiation
nonrenormalized cumulantg{(x,)---Z(x,,))) in terms of the  of Eq. (26) followed by the application of Eq$27) and(28)
nonrenormalized relative fluctuatioms,(x,,...X,,) given by  for m=1, and by the integration over the state vectoAfter
Egs.(15) and in terms of the average renormalized density olengthy algebraic manipulations E¢p) for the average re-
channels, laxation functionl (t) can be written as

(IY=(IYHI(H+1), (30)

1 1
I('[)=HJ’0 2" 1dz ex;{ > H[e(1+1/H)]mJ2---Lcm(xl,...,xm)g(xl)-~-§(xm)

m=1

V* (%)

Vs In|1—z Vs {1—exd —tW(x,)]}

m
x11
u=1

]dxl---dxm] . (3D

By passing in Eq(31) to the thermodynamic limi¢14) and less pronounced, and in the lintit—~ (¢—0) it vanishes
using the nonintermittency conditiori$6) for the nonrenor- completely, resulting in the nonintermittent [&24).

malized fluctuations, we obtain the universal law A particular case of importance both for physics and bi-
ology is the stretched exponential survival statistics for
(=], f p(W)[1—exp —Wt)]dW]|, (32) which the relaxation functioi(t) is given by

[(t)=exqd —(Qt)¢], 1>a>0, 3
where the function(z) can be expressed in terms of the () =exd —(Qv°] “ S

complete gamma function where() is a characteristic frequency amdis a fractal ex-

u ponent between zero and unity. Equati@Y) describes a
y(a,u)zf t2 1l exp(—t)dt, a>0, u=0. (33 broad class of relaxation phenomena in condensed matter
0 physics[1-3], and, on the other hand, gives a representation
of the survival function of cancer patierit,15]. The effec-
tive relaxation rateu(t) corresponding to the stretched ex-

(@) =H[(1+1H)Z] "y[H,(1+1H)z]. (34 Ponental37is

We have

Now we consider certain particular cases of the universal p(t)=aQ(Qt)* L. (39
laws (24) and(32) of the relaxation functiom(t) derived for
nonintermittent and intermittent fluctuations, respectively. ItFor establishing the conditions within which the stretched
is easy to check that the intermittent I482) includes the exponential37) emerges as a particular case of the universal
Huber’'s equatior(24) as a particular case corresponding tolaws (24) or (32), we rewrite the fluctuation-dissipation rela-
the limit H—o. We can show that in this limit the function tion (10) in the thermodynamic limit14); the corresponding
ju(2) tends toward an exponential: expressions for nonintermittent and intermittent fluctuations,

respectively, are

lim jy(2)=exp(—2z), H—x, (35
and Eq.(32) reduces to Eq(24). The physical interpretation u(t)= J Wp(W)exp(— Wt dW, (39
of this result is simple. The reciprocal value of the fractal
exponent,
o=1MH, (36) m(t)= By f dWP(W)[l_eXF(_Wt)]}f Wp(W)
is a measure of the intermittency of the fluctuations of the X exp(—WtdW, (40

number of channels: as the fractal expondnincreases, the
intermittent character of the fluctuations becomes less andhere the functiorn,(x) is given by
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Bu(x)=(H+1)x H1+[(1+1H)"xH] though, in general, according to the fluctuation-dissipation
. relations (9) and (10) the average behavior of the overall
Xex —X(1+1H) [/ y[H+1x(1+1H)]} process is characterized by the relative fluctuations of all

(42) orders, the limit behavior for nonintermittent and intermittent
systems, described by Eq®4) and (32) is independent of

As expected, asl —~ we have the relative fluctuations. It therefore seems that the fluctua-
tions do not play any role in the thermodynamic limit; how-

lim Bu(x)=1, (42)  ever, this is not the case. We should make a distinction be-

Hoe tween the total number of relaxation channels and the

channels which are active; that is, those channels which are
involved in the relaxation process. The average density of
active channels involved in the relaxation process is given by
Eq. (25 both for nonintermittent and intermittent fluctua-
tions; their distribution is random and different in the two

and Eq.(40) reduces to Eq(39) for nonintermittent fluctua-
tions.

If the effective relaxation rate is known from experiments,
then Egs(39) and(40) can be considered as functional equa-
tions for the density of stategg W) expressed in terms of the
relaxation rateV. Equation(39) for nonintermittent fluctua- cases. . . o
tions can be easily resolved by means of an inverse Laplace We can describe the'propertles of the random dlstrlbut_lon
transformation. In particular, in the case of stretched exp09f tgeb{:}_ctlv; chfat1_nnels in terms of a set of grand canonical
nential relaxation, for which the effective relaxation rate jgProba llity densities
tgr:\éecri]e?giltzyq.c(yfi)t,altze%((\ig)- leads to a negative power law for Qo,  On(Wi,... W) dW, - -dWy, (50)

p(W) = aQ W~ 1+ (1 @) with the normalization condition

with T'(x)=1y(x,%), x>0. (43 Qo+ >, 1 f f Qn(Wq .o W)W, - - d Wy .
N=1 N!

The functional Eq(40) for intermittent fluctuations can- (51
not be solved in a simple way. For a comparison with the ) N
nonintermittent case we use an inverse approach and eval@n(Wi,...,.Wy)dW;...dWy is the probability that there are
of statesp(W) is given by the negative power la@3). By ~ are betweetW; andW;+dW,..., andWy and Wy +dWy,

inserting Eq.(43) into Egs.(33) and (40), we obtain respectively. The total relaxation rate of the process is given
by the sum of the individual rates corresponding to the dif-
[(t)=H(Qt) M1+ 1MH) "y[H,(Qt)*(1+1H)] ferent channels which are active:
(44)
and

. and then the average survival function can be expressed as a
p(t)=aQ Q) "By (Q)“]. (45  grand canonical average of an exponential survival function
exp(—WHt), whereW is given by Eq.(52):

From Egs.(44) and (45) for small times, we recover the
o N
1
() =Qo+ > —jJ exp(—t}‘, W,
N=1 N! u=1

stretched exponential behavior
I(t)~exd — (Q1)*], t<Q™ 1 (46)
,U,(t)"“aQ(Qt)a_l, t<Q_l, (47) XQN(Wl,...,WN)dW]_"'dWN. (53)
If in Eq. (53 the average survival functioi(t) is given by
one of the two limit laws(24) or (32), then this equation can
[(t)~T(1+H)(Qt)"*H@a+1H) ", be viewed as a functional equation for the grand canonical
probability densities of the active channels. In Appendix B
t>0"1 H finite, (48 we show that for nonintermittent fluctuations the solution of
this functional equation is

whereas for large times we obtain a negative power law

w(t)~aH/t, t=0Q71 H finite. (49

As the fractal exponerttl increases, the stretched exponen- QO:eXp( B j p (W)dW), (54
tial portion of the relaxation functioh(t) becomes longer
and longer and the power law tail becomes shorter and
shorter; eventually in the limitH— the whole relaxation QN(Wl!"-!WN):p(Wl)'"P(WN)eXF{ —f p(W)dW>,
function|(t) can be represented by a stretched exponential. (55)

It has been suggested that it would be interesting to inves-
tigate the connection between the overall relaxatideath  that is, the distribution of active channels is given by a Pois-
process and the fluctuations of the density of channels fosonian random point process. In particular, considering the
nonintermittent and intermittent systems, respectively. Al-number of active channels with rates between a minimum
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value W, and a maximum valu&V,,,,, the corresponding because in Eqg21) and(31) for nonintermittent and inter-

probability distribution is a Poissonian: mittent fluctuations, respectivelyy*(x) is assumed to be
constant whetVs and(./") tend to infinity.
P(N)=(N)N(N!) ~texp(—(N)), (56) Limit (14) of the thermodynamic type expresses the fact
o that the process considered is complex and involves a very
where the average number of channels is given by large number of pathway&hannels which are uniformly
W and randomly distributed in the state space. Although suffi-
<N>:j maxp(W)dW_ (57) cient for the occurrence of the two types of universal laws
Wiin (24) and (32) for nonintermittent and intermittent fluctua-

tions, the assumptions made in this paper are incomplete, and
Now the cause for the apparent absence of the fluctuations igannot be used for specifying the density of active channels
the nonintermittent limit law is clear. For a Poissonian dis-p(W) with a rate betweeW and W+dW and the fractal
tribution all cumulants of a random variable are equal to theexponent. This is both an advantage and a disadvantage of
average value, and this is the reason why the limit equatiogur approach: it is the main reason for which the results are
(24) depends only on the average density of channels.  valid both for biological and physical systems and, on the

A similar analysis can be performed for intermittent fluc- other hand, because of its incompleteness, our formalism is
tuations, resulting in the following expressions for the ran-not a theory but rather a scenario which should be completed
dom distribution of the active channelsee Appendix B with specific assumptions describing the physical or biologi-
cal processes considered. Such a development would lead to
particular models for different physical or biological pro-
cesses providing expressions for the density of staf¥¥)
and for the fractal exponemi, but of course the generality
of the treatment would be lost.

Our approach is valid for systems with static disorder: for
such systems once a fluctuation of the number of channels
On(Wq,.... W) =p(Wy)- - p(Wy)H(1+ 1H)N has occurred it is completely frozen and lasts forever. Such

L an assumption is justified if the characteristic time scale for
Xf HN-14; exr{ —2(1+1MH) the regression of fluctuations is much larger than the time

0 scale of the process itself. If the two time scales have the

same order of magnitude then the dynamic character of fluc-

Xf ) tuations should be taken into account; the fluctuations of the

p(W)dW .
number of channels are continuously formed and destroyed,
the characteristic functionalS[K(x)] and G[K(x)] also de-
=H(1+ 1/H)Hy( H+N,(1+1MH) pend on time, and the average in E8). is dynamical, being
taken over all possible random functiotis;t). Further re-
search concerning this dynamical problem is presented in
Xf p(W)dW) Ref.[17].

1
QOZHL 2" 1dz exp(—z(1+1/H)f p(W)dW

=jH( f p(W)dW), (58)

~N-H This research was supported by the Alexander von Hum-
x( J p(W)dW) p(Wq)---p(Wy). boldt Foundation, NATO, and the Natural Sciences and En-
gineering Research Council of Canada.
(59

In this case, due to the intermittent behavior, the distribution APPENDIX A

of active channels is no longer Poissonian; however, since it

can be represented as a superposition of Poissonians the fluc-1t has been suggested that the main steps of the derivation
tuation dynamics is entirely characterized by the averagef the renormalized group equati¢26) for intermittent fluc-
density of channelg(W) and by the fractal exponert.  tuations should be presented in an appendix. Here we give a
This fact explains why the intermittent limit lay82) seems simplified derivation of this equation. For further details the
to be apparently independent of fluctuations. interested reader may consult Refs0] and[13].

We conclude this paper by outlining some general fea- The renormalization transformation generating a limit in-
tures of our approach, as well as some of its limitations andermittent behavior consists in a succession of decimation
possibilities of generalization. The occurrence of the asympprocesses of the number of channels characterized by two
totic universal lawg24) and(32) for the relaxation function probabilities: the probabilitye that a decimation process
I(t) is due to two different properties of the process. The firstakes place and the probabiliythat for a given step a chan-
property is related to the nonintermittent or intermittent char-nel is decimatedleft out). For characterizing the decimation
acter of the fluctuations of the number of channels, whereagrocess we use a discrete representation of the numbers of
the second property consists in the local behavior of an inehannels characterized by different state vectors, and denote
dividual channel inx space, expressed by the finiteness ofby
the volumeV*(x) of the neighborhood of the statewhich
corresponds to the open state of the channel. Note that this
local behavior is conserved in the thermodynamic li(ti) N,=Z2(X )Ax%,, u=12,... (A1)
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the number of channels with a state vector betwegand N
x,+dx,. We introduce the notation Dl Yoo )= (1=y,) VPN, L), [1-y,[<1,

(A10)

P(Ny,N,,...) with > > --P(Ny,N,,...)=1
Ny N s =~
v (A2) F(o Yo ) =2 (L=y NP N, L0, [1-y,[<1,
(A11)
for the initial (nonrenormalizedprobability that there arbl;
channels in the group,, N, channels in groupi,, etc., Egs.(A6)—(A1l) lead to

Il Yo s ) =01l (1= D)y, ,...],  (AL2)
Po(N1,Ng,.)  with ) ) +-Py(Ny,Np,..)=1

N1 N with the initial condition
(A3)
Yolee Yy s )= Yy et ) (A13)
and
and
P(N;,N,,...) with ~-P(Ny,Ny,..)=1, N w
Ny N5 - a1 —
1 Ad) D Yyr ) qzoa(l @)V Yy reer). (ALd)

for the corresponding probabilities attached to djtle deci- By applying Eqs(A12)—(A14) recursively, we obtain
mation step and to the renormalized process, respectively. _
Since the probabilityx for the occurrence of a decimation 9(...)y,,...)
step is constant, the probabilifi, that the renormalization "
process is made up gfdecimation steps is given by a Pascal _ 2 21— ) 9[... (1— )0 ]
law, & Vo sene

Xq=a%(1-a). (A5) =(1—-a)9(...¥y,..)+ad[...(1-v)y,,...]. (Al5)

Due to the independence of the different decimation proEquation(A15) has a structure typical of a renormalization
cesses, it is easier to focus on the description of the decim&roup equatiori14]. It generates a negative power law scal-
tion of the channels of a given type. Since the decimation ofng behavior for the generating functiof in terms ofy,

a channel is a random process characterized by a constafiith a fractal exponent

probability, v, we have

H=In a/In(1-v), (Al6)

Pg(....N, )= Paoa(.. NTY ) modulated by logarithmic oscillations in i, with period
—In(1—v). Since these logarithmic oscillations lead to a vio-
N@=D) lation of the self-similarity of the process they should be
XS (’;71) @ discarded. To eliminate the logarithmic oscillations we con-

N, THIN, T =N ™)! sider the limit[16].
(@-1) _pn(@ (a)
XNt TN (1-p)NT, (A6) a,/715\,0 with H=In a/In(1—»)=const.
(A17)

with the initial condition
In this limit the logarithmic oscillations vanish, but the nega-
Po(...,.N,,..)=P(....N,,...). (A7)  tive power law scaling behavior is still present. From Egs.
(A15)—(A17) we obtain the differential equation
The renormalized distribution which eventually emerges af- ~ -
ter the completion of the succession of decimation processes y,dd/dy,=H(3-9). (A18)
can be evaluated froR by averaging over the numbgrof

steps in terms of the probability, The solution of Eq(17), which conserves the normalization

conditions for the probabilities, has the form

o

~ —_ 1
P(---.Nv,---)=qZ0 a¥(l-a)Py(....N,,...). (A8) ﬂ(...,yu,...)=HJ 2" dz9(....zy,,...). (A19)
- 0
By introducing the generating functions The simplified derivation presented above describes the

decimation process for only one type of channels. The gen-

. v N, _ eralization for many types of channels is straightforward.

AR "")_E (1Y) "PCNy )y (1Y <, The detailed derivations are left to the reader. We mention
(A9) only that Eqs(A6), (A18), and(A19) are replaced by
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H[ N/ N we notice that

Py(N1,Np,...)= SR ——

TGN I Ne! (N Nu)! GIK(X)]=dly(x)=1—expiK())].  (A27)
X(l—v)NmJ Pe_1(NJ.NJ,..),  (A20) GIK(x)1=9[y(x)=1—expliK(x))].  (A28)

Combining Eq.(A22) with Egs.(A27) and(A28), we obtain

% ym&';,mym: H(ﬂ—ﬁ), (A21) the renormalization group equati¢p6).

and APPENDIX B
. By expanding the exponential in E4) in a functional
19()/1')’2,...):Hf0 Mldz9(2yy,2Ys,..), (A22) Taylor series, we obtain
where I(t)=exp( —J p(W)dW)
9Y1.Y2,-)= 22 - I] (L=ym)"P(Ny, N, .., o1
mo T SERP mj---fmwl)---p(wm
V|1-yn<1, (A23) N
xexp( —t> wv)dwl--uwN]. (B1)
v=1

Iy Yz, ) =202 -1 (1=ym) 1PN N,
Equation(B1) has exactly the same structure as the grand
V|1-y.l<1. (A24) canonical averagés3). By comparing Eqs(B1) and (53),
we come to Eqs(54) and(55). Similarly, by expressing the
By comparing Eqs(A23) and (A24) with the discrete ver- intermittent limit law(32) in the form
sions of the_definitions of the characteristic functionals

GLKed] and Glk(a] I(t)=H fle’ldz expl’ —(1+ 1/H)zf p(W)
0

G[K(x)]:NE NZ ~--P(N1,N2,...)exp(% iK(xm)Nm),

(A25) x[l—exr(—Wt)]dW], (B2)
GIK _ . P(N: No iK N expanding the exponential in E(B2) in a functional Taylor
LK) Ny % (NN, )exp(}ml K ) Non series similar to Eq(B1) and comparing the result with Eq.
(A26) (53), we obtain Eqs(58) and (59).
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